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Abstract

Interface conditions for coupling the domains in a physically motivated domain

decomposition method are discussed. The domain decomposition is based on an

asymptotic-induced method for the numerical solution of hyperbolic conservation laws

with small viscosity. The method consists ofmultlple stages. The first stage is to

obtain a first approximation using a first-order method, such as the Godunov scheme.

Subsequent stages of the method involve solving internal-layer problems via a domain

decomposition. The method is derived and justified via singular perturbation tech-

niques.

1 Introduction

This is a report on a preliminary investigation of conditions for the interfaces between sub-

domains when solving partial differential equations. The analysis for the method is a combi-

nation of asymptotics and numerical analysis. The result is a physically motivated domain

decomposition method where different partial differential equations may be solved in different

domains. Since different modeling equations are in different subdomains for the same prob-

lem, we call this heterogeneous domain decomposition. The numerical treatment of interface

conditions between the subdomains must be addressed. The approach here is to examine

the physics reflected in the numerical method used within the subdoraains and guarantee

that this same physics is reflected in the interface treatment.

The method is best suited to partial differential equations that contain regions of singular

behavior. A typical situation is when there are narrow regions where the variation in the

solution is large. Such regions are called boundary layers or transition layers depending on

whether they are near a boundary or inside the interior of the domain. Examples of such

situations are laminar flow of a slightly viscous fluid or combustion with high activation

energy. Classical schemes applied to these types of situations generally fail to correctly

describe the behavior inside the layers. This difficulty is overcome by utilizing asymptotic

analysis that reflects the physics of the problem. Here we present and motivate the domain

decomposition method, but the details of the analysis are presented elsewhere [7].

There have been some intersting results regarding interface conditions for heterogeneous

domain decomposition where Euler equations are coupled with Navier-Stokes equations [9],
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and where viscousand inviscid equations where coupled [2, 4]. Many of the basic ideas
relating to asymptoticanalysisand numericalmethodsthat utilize domaindecompositionare
found in [10]. Theseideaswereincorporatedinto a parallel numericalmethodin [5]. Specific
application to conservationlawshavebeendevelopedin [1]. Thereareother important' works
in theseareas-these references are only a small sample of the literature.

The coupling of the problems in the subdomains is based on a balance of the flux across

the interface. Each subdomain is treated as a control volume, and the flux into and out-of

the control volume is balanced. This is similar to the flux-differencing methods used within

the subdomains. The result is a numerical method with no visual artifacts. This numerical

treatment of the interface is an extension (to heterogeneous domain decomposition) of the

work by Osher and Saunders [11]. We expect extension of this method for the interfaces to

work for two dimensional heterogeneous domain decomposition, since it was used for a two-

dimensional homogeneous domain decomposition method that utilizes adaptive refinement

N.

2 Problem Setting and Domain Decomposition Mo-
tivation

Consider the Cauchy problem

ov _F(U) = P(U)._
= for • • m.

for • a
(2.1)

Here the solution U • IR" is a vector-valued function with n components, the domain is

f_ = IR×]0, T[ and e << 1 is a small parameter.

We assume that V is piecewise smooth. We also assume F and P are regular functions

of U. We suppose that P is a suitable viscosity matrix [3] for the shocks of the associated

inviscid problem

OU ° 0 o

_F(U ) 0 for (x,t) E fl
_-+ = (2.2)

U°(x,O) = V(z) for z • Ill.

Namely, a shock-wave solution to (2.2) can be obtained as a limit of progressive wave solutions

of (2.1). Problem (2.1) is a parabolic-hyperbolic singular perturbation problem driven by

(2.2).

The regions where the solutions to the associated inviscid problem fail to be good ap-

proximations to the solution of the full problem are the regions where we use a subdomain

to localize the behavior of the solution. Thus, we have two types of domains. The first type

of domain is located where the regular expansion

D'°:t'*" = U ° + eU 1 + c2U 2 +... • (2.3)
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for U is valid and the solution is smooth. The second type of domain is where the solution

exhibits singular behavior and the regular expansion for U is no longer valid.

We substitute U°_ ter in the differential equation of (2.1) and use identification in e to

obtain that U ° must be a solution of (2.2). The inviscid problem (2.2) has many weak

solutions; it is possible to uniquely define U ° by considering the problem that governs U 1

[7].
The failure of the regular expansion is reflected by some of the terms in the PDE governing

U ° being significantly larger than other terms. Typically, the term RHS(U °) will become

unbounded as the small parameter _ tends to zero. For finite e, a large RHS(U °) would

indicate that the region should be covered by a subdomain in which we apply techniques

designed to capture the singular behavior of the solution. We describe how to use a measure

of the numerical approximation of RHS(U °) to place the subdomain boundaries in a later

section of this manuscript.

D

2.1 Problem in the Singular Region

So that we can handle the regions where solutions to problem (2.1) contain sho_:ks that

interact with other singularities we use a brute force approach that will capture all possible

behavior of the solution. The approach is to use the coordinate system

x t

E

in the regions with shocks. We will present and motivate the domain decomposition method,

but the details of the analysis are presented elsewhere [7, 6]. Under this transformation the

PDE that governs the solution becomes

O[J 0 P(U).--_o---;+ F(8) -

where _-(_, r) = U(z, t). This is the equation that is solved in the singular region.

This scaling is most appropriate for regions where shock-layers are interacting with other

non-smooth physical phenomena. Because the transformation a priori resolves all of the

physics. This is reflected by all of the terms in (2.4) having magnitude of order unity or

smaller. In general, this method is overkill, similar to using a shotgun to dispatch a housefly.

We choose to study only this brute-force approach so that we concentrate on one type of

interface. Other treatments that include more of tile physics are possible [7]. They can result

in more efficient numerical methods than the one discussed here.

The boundary condition at the interface is to impose that the viscous equation from

problem (2.1) be the model at the interface between the subdomains. The computational

implications of this condition is discussed in §4.
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3 Conservative Discretizations

It is important for the diseretization techniques to satisfy a discrete conservation relation.

One can verify that if the discretizations can be written in the form

4 +1 = 4 - A(h,+I/2 - h,_,/2),

then the method satisfies tile appropriate conservation relations. Here we use flux differencing

methods based on a finite-volume formulation of the problem.

We will discuss the differencing method for the outer region subdomain where the solution

is smooth first. Let W0 be the discrete numerical approximation to U °. We use a first-order

finite-volume method. This method assumes that the value W_i is an approximation to the

average of the desired function U ° over the spatial interval ]xi-l12, xi+ll_] at time t =kAt.

The method can also be categorized as a flux differencing technique since the general form

of the discrete analogue to the original PDE can be written

W k+l k _ )_(F_+,/2 _ (3.5)o, : w0,, -
where

Fikl/2 _'_ r( woki i x/2). ,

Here the fluxes are based on the first-order Go(lunov scheme; thus, the flux fj for com-

ponent wj of W0 is approximated as

_ k
fjki+i/2 1 [fj(w_kl)-_- L(W_,I+I ) _ oti(Wj,iT, _ Wj,i)] (3.6)-7

where a_ is an approximation of the upper bound on the local speed of sound.

The discretization that is used for the numerical method in the shock-layer region is

a modification of the treatment used for the outer region. We have used a coordinate

transformation that creates a smooth problem for this subdomain. Let 1_0 be the first

order numerical approximation to U-. Let 1_, be an approximation to the the average of

the desired function U over the spatial interval ]_:-_/2,_;'+_/2] at time r :kAr. The flux
differencing technique is

where

0_r?+1/2

The particular discrete form for each component of the flux is obtained using a formula

similar to that of Equation (3.6).

We are not restricted to this particular numerical discretization; however, the numerical

treatment of the interface will possibly need to be modified for different numerical treatments

of the problems within the subdomains.

One can verify that the flux differencing methods given above satisfy the discrete con-
servation relation. What remains is to formulate the conditions at the interface so that the

relation will be satisfied globally.
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4 Treatment of the Interface

Using the shock-layer coordinates with A( = CAz will result in C/e points in the shock-

layer for each point in the outer region. Here, a typical value for _ is .01; hence, this results

in a radical grid refinement for the shock-layer. For the numerical method, since there will

be many grid points in the shock-layer for each point in the outer-region, we will refer to

the shock-layer grid as tile refined grid, and the outer region grid will be called the coarse

grid. Tile temporal coordinate will also be stretched, resulting in the situation outlined in

Fig. 4.1.

r
time

tk

_k-I

-- TK_I

7"3

T2

7-i

space

Figure 4.1: Interface at the left boundary

4.1 Flux Treatment of Interface

As in [11], we view the interface treatment as a predictor-corrector method on the coarse

mesh. We start at time t = t k. The coarse-grid values are defined everywhere, and are the

average of the corresponding fine-grid values when the coarse-grid volume element is within

the fine-grid region.

The steps for the first order method are outlined in Algorithm 1 below. At time step

k, the shock-layer has /V(k) points in the interior of the region and a ghost point on each
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Fork = 1,....

I. March W0 from tk-1 to tk based on scheme (3.5).

II. Detection.

A. Compute the residual on tile coarse mesh.

B. Mark regions that should be refined. (Let this be the region between mi_-l/_

and xiR+l/2.

A. Modify shape of refined region.

III. March the shock-layer region from tk to tk+l. For k = 1 to K

1. Form the initial condition in newly refined regions.

2. Use linear interpolation to compute the ghost values of IYV_

3. March lfV'0to rk+ 1 based on scheme (3.7).

IV. Project _l,r0 onto W0.

V. Correct values W_L and W0kR based on tile shock-layer fluxes.

ALGORITHM 1 Numerical Method.

side of tile refined region. There are a few points that need to be clarified in this algorithm.

The interpolation to obtain ghost values (i.e. " _"W0,6) is hi-linear interpolation based on i,_,_-10,I '

W. k-x and k0,L-X W_,L_I. Tile initial condition for this problem is derived by imposing mass

conservation; thus, the fine-grid values are all initialized to the value of the solution at the

cell center. Improvements in the initialization procedure is a subject of further research.

The correction of the coarse-grid values in Step VI is to use the same discretization that

was used when the values were originally computed, but to modify the fluxes at the boundary

of the domain to reflect what happened on the refined region. That is, to update W]'O,L' We

L_k-1
F_+I/_ with the formulawould use scheme (3.5) with (3.6) for "L-I�2, but we would compute k-t

k-1 1 K-1

_=0

One may verify that this results in a globally conservative method. Also, this treatment

of the boundary is consistent with the boundary conditions imposed in §2.1. Namely, this

treatment of the interface is consistent with the viscous equation from problem (2.1) being

the model at the interfacc between the subdomains.

4.2 Dirichlet Treatment of Interface

As a comparison to the flux boundary condition, we also implemented the heterogeneous

domain decomposition method with dirichlet boundary conditions at the interface. This
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is an interesting comparison, since there was little difference in the results when the two

different treatments of the interface were used (this is discussed in §6).

5 Detection of Interface

We present the detection of tile interface for the sake of completeness. Detection of the

interface based on computational data results in a method that can have a different location

of the internal-layer subdomain for each time step. The detection for the numerical method

is based on obtaining an approximation to

OWo OF(Wo)
--+

Ot Ox

0

This term is the residual from using W0 as an approximation to the solution of (2.1). The

residual is of magnitude O(Ax -1) in either a shock layer or in a zone where a shock interacts

with other singularities.
0 2

It is also possible to use an approximation of the viscous term -g-g,_Wo(.,tK) to localize

some of the singularities. For example, this viscous term will be of order O(Az; -1) in a

shock layer or in a zone of interaction. This method is not as reliable as using the residual,

however. Other types of behavior can be located and identified using these techniques [7].

6 Application to the Isentropic Gasdynamic Equa-

tions

In this section we examine the interface treatments on the viscous isentropic gasdynamic

equations
Ou Ov

-0
Ot Ox

o(ou)Ot O_ -_ = _-_x -_ "

Here u is the inverse of the density and v is the velocity. These equations are obtained from

the conservation of mass and momentum in Lagrangian coordinates assuming that u is equal

to the pressure raised to the -1/Tth power (the perfect gas law). The experiments were run

with '7 = 2.2.

The problem is a right-traveling shock interacting with and a left-traveling rarehction,

both of which eminate from the origin. An analytic self-slmilar solution (a rarefaction emi-

nating from the origin) to the inviscid isentropi¢ gasdynamic equations is given by
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v(x,t) = -4- i + con t. " (6.0)
An initial condition with a shock and rarefaction eminating from the origin is constrttcted by

connecting left values to middle values with a rarefiLction. The middle values are connected

to the right values with a shock. Thus, the initial condition is given by

where

(, UL, forx < 0
U(;g, 0) (6.10)/ /JR, for x _> 0

f vL, forx < 0
_)(X, O) (6.11)/ VR, for x_> 0

UL = 1.4709, Un = 2.5000, VL = 1.0388, VR = 0.8050.

The middle value of the solution between the shock and rarefaction is (UM, VM) = (1.973, 1.356).

We remark that the middle values were was chosen using the Rankine-Hugoniot condition

vM- vR 1/v - 1/u7 
UR--UM VR-VM

We expect the the viscous perturbation to have little or no effect on the speed at which

shocks and rarefactions travel; thus, we will compare the viscous solutions to the solutions

given above.

The method was run with e = .01. The discretization parameters for numerical solution

in the outer region have CFL number At/A:e = .1, and Ax = .02. The discretization on

the scaled coordinates inside tile shock-layer is based on A_ = .1, with the CFL condition

Ar/A_ < .025 and the stability condition Ar/A_ 2 < .1. These values are well within the

limits imposed for the stability of the finite difference methods.

Figure 6.2 depicts the evolution of the internal-layer subdomain when the two differ-

ent boundary conditions are used. The errors generated by using the dirichlet boundary

condition when the rarefaction is trying to exit the internal-layer subdoma_n result in a

larger computed second derivative, and the detection scheme kept the rarefaction inside the

internal-layer much longer. The solution projected onto the coarse grid at the end of the

computations showed little difference between the two methods (Fig. 6.3). The primary dif-

ference is the visual artificats at the boundary of the internal-layer subdomain at the point

when the rarefaction is exiting the subdomain (Fig. 6.4).

7 Conclusion

Clearly the best interface condition is the flux-based treatment; however, the dirichlet bound-

ary conditions did not induce as many errors as expected. One explaination of the lack of

errors may be that the internal-layer subdomain boundary moves fast enough that waves

propagating out of the internal-layer subdomain are allowed to pass across the bbundary

by the oscillations in the boundary. More studics are planned with the goal to identify the

precise nature of the errors associated with the interface treatments.
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Figure 6.2: Evolution of the Internal-layer Subdomain.
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